Expertise:
Education:
Contact:
970-247-7378 Email
Our faculty are available to comment on topics related to areas of interest or expertise. If you need further assistance, call Media Relations at 970-247-6073 or email Media Relations.
David Gonzales is a professor of geology at Fort Lewis College. He is an alumnus of Fort Lewis College (1982) and, after his graduate studies, joined the college in 1997. Dr. Gonzales is interested in research on the magmatic, tectonic and landscape evolution in the Four Corners region. He frequently involves students in his research and has received funding from the National Science Foundation, the U.S. Geological Survey EDMAP program, Kinder Morgan, and other sources to support his research. He has served as a reviewer for many academic journals, geologic software products, and grant programs. In addition, Dr. Gonzales has been a geological consultant for numerous companies and academic activities.
Dr. Gonzales was Fort Lewis College's featured scholar for 2006-2007 and recipient of the 2003 New Faculty Teaching Award. He lectures and presents his research at professional geological conferences around the country.
I. The Timing of Magmatic Events that are Preserved in the Western San Juan Mountains
Since 2011, Dr. Gonzales and students in the Department of Geosciences have conducted research on the timing of magmatic events preserved in the western San Juan Mountains. This work is being presented in a peer-reviewed publication and several presentations at the Rocky Mountain sectional meeting of the Geological Society of America in May 2015.
About the Research
Rocks have stories to tell about the process and events of Earth's history. Understanding the timing of geologic events recorded in rocks helps scientists decipher the patterns and interconnections of different geologic events. In the western San Juan Mountains, intrusive rocks (melted rock emplaced below the surface) are closely tied to mineralization and mountain building periods. Dr. Gonzales has spent the last three years obtaining radiometric ages on these rocks from the minerals they contain. This research has allowed patterns of intrusive activity to be better defined, giving insight into the connections of magmas with other parts of the geologic history. Dr. Gonzales's research has also contributed to a new understanding of the "birthdays" of some iconic features, such as Engineer Mountain north of Durango, Colorado, which had never had an age assigned (today, Dr. Gonzales and his team know that it formed about 17 million years ago).
Dr. Gonzales Explains the Project
"The western San Juan Mountains are a virtual warehouse of geologic wonders, yet our understanding of the magmatic history has been limited. This is due to a lack of data and the fact that some older age constraints are not reliable. The formation of magma bodies in the region made mountains, changed the courses of rivers, created mineral deposits, and contributed to thermal springs. My research on the timing of magmatic events is the most extensive to date and provides keen insight into the magmatic events over the past 80 million years."
II. The Origin of Carbon Dioxide Gas in the Four Corners
Since 2008, Dr. Gonzales has been researching mantle rocks in the Navajo volcanic field with high concentrations of carbonate minerals, suggesting a possible connection between these magmas and subsurface carbon dioxide reservoirs. That research was the catalyst for ongoing research using noble gas isotopes to explore the origin of the carbon dioxide gas in the Four Corners.
After a visit to a naturally carbonated spring in Gerolstein, Germany, Dr. Gonzales began to explore the idea that the high concentrations of carbon dioxide gas found in deep wells in southwestern Colorado might also be connected to mantle magmas.
To gain insight into the origin of carbon dioxide trapped in deep reservoirs in southwestern Colorado, Dr. Gonzales obtained a full spectrum of noble element isotope signatures (Ar, Ne, He, K, Xe) from subsurface gas samples. Previous ideas held that the gases were created by thermal metamorphism of carbonate reservoir rocks or directly from magmas. The isotopic signatures of noble gases can provide insight into whether the isotope was generated by magmas, surface water, atmospheric sources, or other sources in the Earth's crust.
"This project is being done in collaboration with Kinder Morgan and Dr. Thomas Darrah at Ohio State University. Kinder Morgan is interested in the ultimate source of gas and has provided support to conduct this research and involve undergraduate students from the Department of Geosciences. The data for this research reveals a complex history that involved magmas that formed in the region from 80-5 million years ago. Noble gas isotopes provide important 'tracers' for understanding where the gas may have come from and its history."
"New Constraints on the Timing and History of Breccia Dikes in the Western San Juan Mountains, Southwestern Colorado," The Mountain Geologist, 56(4), 397-420, 2019
"New U-Pb Zircon and 40Ar/39Ar Age Constraints on the Late Mesozoic to Cenozoic Plutonic Record in the Western San Juan Mountains," The Mountain Geologist, 52(2), 5-42, 2015
"New U/Pb Zircon and 40Ar/39Ar Age Constraints on the Late Mesozoic to Cenozoic Plutonic Record," Southwestern Colorado: Implications for Regional Magmatic-Tectonic Evolution, 2015
"Petrographic and Geochemical Constraints on the Provenance of Sanidine-Bearing Temper in Ceramic Potsherds," Four Corners Region, Southwest USA, 2015
"Geology of the Durango-Silverton Train Route," Durango-Silverton Narrow Gauge Railroad Guide, 2013
"The Benefits of Research in Undergraduate Education: Perspectives From a Teacher and Students," The Professional Geologist, 2013
"A Legacy of Mountains: Mountains Past and Present in the San Juan region, Colorado— Geology, Ecology, and Human History," University Press of Colorado and Mountain Studies Institute, 2011
"New Insight into the Timing and History of Diatreme-Dike Complexes of the Northeastern Navajo Volcanic Field, Southwestern Colorado," Geology of the Four Corners Country, 2010
A paper by Professor of Geosciences David Gonzales and Geology major Otto Lang, "A Comparison of Nd, Sr, and Hf Isotopic Signatures for Late Cretaceous and Pliocene Plutonic Rocks in the Rico Mountains, Colorado: Insight into Magmatic Sources at 68 and 4 Ma," was published in The Professional Geologist, the journal of the American Institute of Professional Geologists.